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ABSTRACT

We can create a richer and more neurophysiologically realistic model of
neural activity in the brain by developing a model of neural-dendritic coupling.
one which expressly accounts for the way in which the many afferent connec-
tions into the neural body influence the somatic membrane potential. Such a
model would begin to fill the need within the Artificial Neural Network commun-
ity for neural models which go beyond the current "weighted sum" paradigm for
artificial neuron connectivity. Although such models have use in engineering
applications, there are many aspects of biological neural-dendritic organization
which could enrich artificial neural networks. Moving from simple "axonal"
connection weight neural models to neural-dendritic models with a richer struc-
ture will allow investigation of both events at the neural level (e.g. inter-spike
interval histograms and stochastic resonance) and also potentially at the neural
systems level. This will also introduce the possibility of introducing cross-scale
interactions into artificial neural systems.

I. INTRODUCTION
The effect of neural -dendritic interactions has so far been only weakly probed in the realm

of artificial neural networks and neural modeling. Traditional Artificial Neural Network (ANN)
models of interacting neurons use a simple description of neural connectivity. In such simple
models, communication between neurons is afforded by artificial axons, and the "strength" of a
given neuron-to-neuron connection is given as a "connection weight" between the two neurons.
Synaptic plasticity is viewed in terms of the modifiability of connection weight ("axonal")
strengths (for a review of ANNs, see Maren. Harston, and Pap, 1990).

A more neurophysiologically realisitic - and interesting - basis for modeling neural systems
would take into account the nature of neural-dendritic connectivity. Such considerations for
neural systems modeling were advanced as early as 1958 by John von Neumann. In 'The Com-
puter and the Brain,' von Neumann wrote:

..-However, the more frequent situation is that the body of a neuron has synapses with axons
ot many other neurons. It even appears that, occasionally, several axons from one neuron
form synapses on another. Thus the possible stimulators are many, and the patterns of
stimulation that may be effective have more complicated definitions than the simple "and
and ,or" schemes dc,,cn1bed ... It may well he that certain nerve pulse combinations will
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volume. resulting from action potentials at other neuron.s, contrribt•>, to i1: ,t ...
volume activation. We think of this input as being predominantly duc to chinii. jf itOed -\7 .J!%
tic transmissions which have time-constants in the I-5ms. range I Kandel et a! 1 •' p '

a great extent, the elicited post-synaptic-potential (PSPI response to aflerent ,pi.rkin i, tlnear
flowever. the response is bounded from above in the case of excitator', innput, and Irom bhCkA
when the inputs are inhibitory. This is due to probabilistic release of quanti/ed packet,ý of ncur:,i
transmitter into the synaptic cleft fEccles, I98 lI and to a finite number of channel,, in the post-
synaptic terminus. Further, experimental measurements of exciiatory and inhibitory PSP. shov,
that both are maximally within several tens of millivolts of the membrane resting potential fKan-
del et. al. 1991J. This also indicates bounding of the PSPs. Bounding also come.- about through
scalingof the PSP which occurs in the short distance the PSP travels from the synaptic site, at the
spine head, to the spine base; simulations indicate that the potential may drop by as much as 95,4
as a result [Segev et. al. 1992]. Consideration of these combined factors will allow us to model
the temporal derivative of the activation or total polarization of a small dendritic volume as an
activation decay term plus input terms. The inputs will include the weighted and bounded effects
of presynaptic signals from axonal and/or dendritic connections, a weak (low amplitude and fre-
quency) periodic driving force, and noise. As we shall see later, the form for the temporal deriva-
tive of the activation in a synaptic volume will be the same as for the neural body itself.

The activation potential which originates in a local dendritic volume and moves through the
dendritic arborization towards the soma undergoes two substantial changes [Segev et. al. 19921.
Both changes influence the model that we construct for time-dependent activation at the soma-
First, there is a marked attenuation of the maximal signal amplitude, and second, there is a draw-
ing out of the signal waveform. Simulations by RaLl and Rinzel [19731, Rinzel and Rail [19741
and Segec et. al. [19921 indicate a strong attenuation if the synaptic PSP as it passes from the ori-
ginating dendritic volume towards the soma. The final maximal signal amplitude reaching the
soma can be less than 1% of the original maximal amplitude, even though the stretched signal
duration indicates that a substantial portion of the signal is preserved via temporal integration.
This leads us to model the neuronal (i.e. soma) input not as the direct value of the synaptic activa-
tion but rather as a bounded function of it. This makes plausible the use of a transfer function
such as a sigmoid or hyperbolic tangent. which is so ubiquitous in ncural modeling. It is impor-
tant to point out that the decoupling (to be described in the following section) of the neuro-
dendritic stochastic differential equations via the adiabatic theory will be tantamount to a ,quasi-
linearization" of the dendritic dynamics. Another observation arising out of these simulations is
that the PSP signal waveform is greatly stretched as it travels towards the soma. Specifically. an
input that may occur in less than 10ms. at the synaptic site may have an influence persisting over
100m5. at the soma. This is particularly true if the synaptic site is far from the soma. We can
summarize this by noting that "...the dendritic tree behaves as a substanual dlax Ltine for the
synaptic inputs (and that] distal inputs are subject to significantly longer neural dclavŽy than proxi-
mal inputs..." [Segev et. al. 1992]. The notion of different distributions of synaptic input has be-en
stated and experimentally observed as early as the 1960s le.g Rall 19701. In any given neuron,
due to the branching nature of the dendritic tree, there will be far more distal input, than proximal
inputs. Thus, to a first approximation, we can model the synaptic inputs under the ,,,surnptDon that
the time-constants of events are "stretched" as they move through the dendln:i, ,.,>,_e to the
soma. This allows us to make an adiabatic approximation in trealin,- t, a::..::: ,,' '.it' of
the dendritic volumes and the neuron.

We turn our attention now to the membrane potential at [the ne'urai -t .:: , ..

and note that again we ma' think of the temporal denvativc of tf, a'h - :7 ,'- ,,



b•ack to a (ziro-level restirti stdte A more cel tc"le n& od0I ol ne K W- MM.iti Ujon rI kt'lfc. l [-z
inputs to Ole neui1i t S\NStm he mwLodeld III a '01.olntlilu s nIII I.IlCie. ConiSJSLCLt "II)l Oh r lo

inR of the "stretched" arm 7 t ()I dendrinRc &ivnt Rii\ tme, nural o0tfla, ad l- S X', 6 l al Oct (¾

Rail ard Rinkel 1 9711i. Rj•n4l & Rail I 1974t. liolniest & a•il •11)r2j, and Sc e\ý% c! al iil l ck,)
a later work. Stein er at. ; hi74 isii wioud aLe aetIIVaton Oi the cnuron as th e raneute rat&h ner. e
impulses would be fired While this would allou an intuitive connection el t eof the neI,- ura
model description and "staies". A hich could be roughly described in termis of ith icede a% raL e I
quency of firing of an action potii.::al, i: dces not serve when the model ncedd to bc cornnctcd
"with a more explicit description of neural dynamics, such as the generation of interspike inter-,a]
histograms. We will return to this point later in this work. Subsequent investigators have
developed diffusion models in which the discontinuities in u di ) have been smoothed out (see e.
Tuckwell. 1980 and references cited therein). While more mathematically tractable, such models
again treat the arrival of excitatory and inhibitory signals to the neural soma as discrete rather
than continuous processes.

For the current work, a more precise identification of the neural membrane potential is
needed; one which distinguishes it from the potentials within the dendritic network afferent to the
soma, and one which decouples the continuous-time activation changes in the soma that occur in
response to input and activation decay from the action potential, whose abrupt nature may be
viewed as a reset mechanism of an otherwise continuous process. In our work, the variable u,(u
refers specifically to the membrane potential at the tuigger zone in the neural soma. This is
because the interesting dynamics of the soma are generated at the trigger zone, which has a lower
threshold than the rest of the soma. However, changes in membrane potential at the trigger zone
propagate rapidly both throughout the soma itself, and down the axon as an action potential. We
regard the brief depolarization and cnsusing hyperpolarization of the action potential (and its
corollary within the neural soma itself) as a reset mechanism whose details are not addressed in
this work. Our model does, however, address the continuous changes in membrane potential due
to dendritic connectivity, activation decay, and other factors.

The disparity in the neural and dendritic time-constants discussed above is incorporated into
our model via the constraint,

Ri <<RI (i>1). (2)

This constraint will allow us to confidently utilize the slaving principle of Haken 119771 to reduce
the system (1). This reduction is carried out in the next section. Wt also consider, via numerical
simulations, the range of validity of the adiabatic elimination technique as well as the bifurcation
properties and collective effects that appear in the decoupled neuron dynamics because of the
interaction with the dendritic bath. Finally, we discuss switching events (between the
firing/quiescent states of the neuron) that arise as a consequence of the interplay between the
noise and the periodic modulation... stochastic resonance.

II. SINGLE NEURON DYNAMICS

The separation of time-scales embodied in the inequality (2) permits us to apply the slaving
principle [Haken 19771 to the coupled system (1). This leads to a closed equation for the soma
activation function ui(t) i.e., the system (1) is decoupled. The proceedure is outlined in the fol-
lowing subsection (refer to Schieve, Bulsara and Davis 1991, Bulsara, Maren and Schmera, 1992
for details) in which we also introcuce the effective "potential function" corresponding to the sin-
gle neuron dynamics. This is followed by an analysis of the bifurcation properties of the reduced
model (in the absence of the deterministic modulation q sinu). The remainder of this paper
examines the cooperative effects (together with their potential implications in neuroscience) that
arise when this modulation term is switched on.

Reduced Neuron EqLuation

Squation ( I i represcnts a system of globally coupled nonlinear stochastic differential equa
ivon,. subject to the c ostrairt; ('2 on the equivalent circuit resistors R,. The N-dimensional
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and we have set Gk =I -Jkk Rk. Equation (9) (the so-called "reduced" or -effective" neuron
dynamics) co•stitutes the starting point fbr our subsequent analyses. u representing the volhagc
at the soma. We note that it contains (via (11)) the effects of the coupling between the cell hod.
and each of the dendritic volumes. Back-coupling (characterized by the coefficients J, ) effects
are included as well as self-feedback terms (characterized by the coefficients /,, ). Cross-coupling
terms (chlarcterized by products of the form RiRkJk ; k j > 1) between the dendritic spaces are
also present but are neglected. It is important to point out that, in general, the expressions (1 lb,c)
contain higher order terms; these are absent because of the truncation (at second order) of the
Tiylor expansion of the functions tanhu,., consistent with our assumption of small deviations
from equilibrium of the dendritic "bath". The detailed analysis [Schieve, Bulsara and Davis 199112 ,'
leading up to the expressions (I1) shows these terms to be of higher order in a, R,,2C_ We
assume that the dendritic noise terms are sufficiently weak so that we always have

2 <1 i 1, (12)

so that the deviations u - ui are small. Note also that we have not assumed that the matrix .j is
symmetric, in contrast with existing (Hopfield-type) models. In fact, no further assumptions
beyond (2) and (12) (both of which are based on very reasonable physical and neurophysiological
arguments) as well as the adiabatic assumption of very low modulation frequency W. need be
made to obtain the reduced neuron dynamics (9). In the next subsection, we write down the
"potential" function corresponding to the reduced neuron dynamics and examine its stability and
bifurcation properties. We also present numerical simulation results that elucidate the range of
validity of the reduced description (9) when compared to the full dynamics (1).

Steady-State Potential Function; Stability and Bifurcation Properties
It is easy to show, via linear stability analysis, that the dynamics in (9) are globally stable as

long as Ct>!O. For this case, the potential function U(ul) is a Liapounov function for the reduced
dynamics (9). We note that stability does not depend on the properties of the coupling matrix j
Assuming cot0, we can easily show that the potential (10) will be parabolic (with an elliptic fixed
point at ul--0) if 0!<_x (this includes negative as well as positive values of 53). For 3 > Cr, the poten-
tial is bimodal (with its minima located at c -±(/ca)tanh(5/a), and a hyperbolic fixed point at :)-)m
and cooperative stochastic effects come into play. The transition to bimodality (at f: c, is
accompanied by a pitchfork bifurcation in the most probable value of the activation u. Aith the
two states (attractors) corresponding roughly to the quiescent and firing states of the neuron. Thc
flow (given by the first term on the rhs of (9)) exhibits the charactenstic N-shaped relioioi,,hq,
known to exist in excitable cells (see e.g. Rinzel and Ermentrout 1989. Abbtll and Kepicr 111,
We now consider the effects of the cell body coupling to multiple dendnrt volume, on' Oil
sition. Throughout the remainder of this work we shall assume, for simplicitv, that thic n
ances in the elemental dendritic volumes are the same and, further, that all the 'n
constants are equal Specifically, we set ,: R , -R for all i > I and ( V for
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diagonal clements .,, and J,,. Increasing the noise variance &r, degrades the etfectc this is evident
from (1 lb). t is apparent that the coupling to the dendritic bath may actually introduce a phase-
transition-like behavior into the neuron dynamics. Effects such as this couphrn.-iruduued bimodal-
irv are a hallmark of multiplicative noise (see e.g. ftorsthcmke and Lefever 198-- and have been
examined in simpler neuron models (for both additive and multiplicative noisesi b% Bulsara, Bo's
and Jacobs [1989], and Bulsara and Schieve 19911. The opposite effect can also occur: depend-
ing on the magnitude and sign of each elerient .1,, a potential that is bistable in the absence of the
bath coupling, can be rendered monostable by the dendritic field. This is evident from (1 b).

0.042

0.034 -

0.025 - Fig 2. Neuron (cell body) probability density

0.025 7 ,computed via direct integration of (1) and
the reduced equation (9) (data points).S.} . ., . a .; ~ ( R I ( g z • q o , .N _) m -( l 0 ,5 ,2 ,0 .I ,0 . 1I, I 0 ) .

0.017 =1= i J 0, j Z= I (i > 1

, ", , R2 =0.35 (solid curve and filled data points)
and 1.0 (dashed curve and asterisk data points).

0.000
-30.0 -18.0 -6.0 6.0 18.0 30.0

U,

Before concluding this subsection, we present the results of numerical simulations aimed at
demonstrating the validity of the approximations made in this paper. Figure 2 shows the probabil-
ity density function corresponding to the "slow" variable ui. The solid curves (corresponding to
simulations of the fully coupled system (1)) have been obtained via direct integration on an HP-
Apollo 425T workstation. We consider N=10 elements since the simulations become prohibi-
tively time-consuming for larger N values. The system has been integrated through 12,000
periods of the deterministic modulation (after allowing the transients to die out) using a Ftepsize
oh (0.015- Noise has been included in the dynamics via the fHeun algorithm (see e.g. Greiner et. al.
l(1*r8X. The data points show the results of integrating the corresponding effective one-body equa-

1n 0) using the same routine In this figure we take RI 10 and consider the case R,= 0.35 and
I (). all other parameters remaining fixed The agreement between the exact and reduced dynam-
ic- i, v'oen to be excellent for RP= 0.35 Increasing R 2 to 1.0 still yields reasonably good quahta-

wrl•.'r,,,nt althouthl it r, apparent that we are very close to the boundary at which (2) ceascs



An approximate expression for the power spectral denrsat, for a onc-dinme n IwIrCir
stochastic svstem of the form (9) has been dcrived by McNamara and WVicsenltt lI

P (Q) I - 2Z (ro )(2 1 tgZroC2) m 4 (rZ TE 2) 2 2 (-w

N(K2) , S(Q) &2 -8 uQ I

where we define Z = (4r 2 +0-2)- and .5c,:• is a perturbation theory expansion paraneter S
and N are, respectivclV, the signal and noise powers. The above expressior provide, a good
approximation to the power spectral density for C < I and has been derived under an adiabatic (0 c
low-frequency) approximation w << U(2)(c) that is somewhat less stringent than the w << r, approx-
imation introduced earlier. The SNR is then obtained from

SNR= 10log 4- (W)

9.0

6. 0 Fig 3. SNR computed from (16) and (17) for
I /(RIR 2 ,q ,(,AwtN)zl_0)0.6 0.10.10001 100)

C.1 I Bottom curve: J, =0 (isolated case). Remaining<curves: a2=O (top), I (middle), and 2 (lower).
______,__I I Inset: the case for no modulation in the cell-bod)3 .0 i ' .; 2 . . .... f

3.0--. eqn. in the system (1).

0.01. -0I

0.0 5.0 10.0 15.0
02

2.0

A-

Fig 4. Peak SNR (normalized to its value
for J1, =0 case) vs. R for (R., a oA~oN jV-=

z " (10,0.1,0.1,0.001,10) and (3,= 0 (top curve),
, 41 (middle curve), 2 (bottom curve),

~~~~~~' j " -....... i i =0 J2= 1 ,(>1).
0. Solid curves:J_ =1' 'J 1_ , .,

Dotted curves: Jh, 1.. J, _I.J , :

0.C 1 0 20
R.
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absence of the bath, as a consequence,

IN'. STATISTICAL ANALYSIS OF FIRING; EVENTS

It is important to point out that stochasti, ,csonance (as characterize,'! by the bell-shaped
SNR vs. noise variance curve of figure 3) has not yet been directly observed in a living system
(although we will ennunciate a possible caveat to this statement at the end of the following sub-
section). The existence of noise-induced switching in the nervous system would seem, however,
to be an eminently reasonable assumption, based on our simple model of the neuron as a noisy
bistable switching element. Certainly, noise is ubiquitous in the nervous system: hence one
might expect that when sensory neurons are periodically stimulated, the time intervals between
successive firing events contain sensory information. These "reset" or "refractory" events
correspond to the repolarization of the cell membrane. In fact, this has been well-known to neu-
rophysiologists for many years. In neurophysiological experiments it is common to assemble an
ensemble of firing events and fit a histogram to the intervals between the spikes. An example of
these Inter-Spike-Interval Histograms (ISIHs), which are quite commonly seen in the neurophy-
siological literature, is shown in the following subsection. In this subsection we also demonstrate
how the salient features of the experimentally observed ISIHs can be easily explained by our
bistable model; in fact, we shall see that our model affords the simplest possible interpretation of
the experimental spike train data. Throughout the rest of this work we show results for arbitrary
values of the constants a, P3,8 in (9), i.e., we do not consider the particular details of the quanti-
ties on the right-hand-sides of equations (11).

The Inter-Spike-Interval Histogram
We now return to our reduced system (9) and consider only the time intervals of the transi-

tions between the potential wells (labeled A and B) while ignoring the intraweU motion (recall
that the potential wells correspond, roughly, to the firing and refractory states of the soma). This
is tantamount to replacing the detailed dynamics contained in (9) by the equivalent "two-state
dynamics" depending only on the barrier height and the locations of the elliptic points of the
potential (10). The result is the random "telegraph signal"x(t) ( zut(t) in the notation of this
paper) depicted in figure 5.

ABBA

B B B B3

Xo [Fig 5. Sample output from two-state device

driven by noise plus weak sinusoidal
-4- modulation. Stable states at ±+xo are labelled

S__ ____ - i-tim e A and B. The ABBA and ABAB sequences
shown, are the only consecutive time-interva
sequences available to the two-state system

-X0 o • from which ISIHs can be generated.
A A A A

T, T2  T3

ABAB



-15%

thc deterministic mod u aj In ir, i. t the ,•!v, s kquLnc cs ol igu re 5 lead to d lI rc re I.rn S I I I , ' I
sequence, referrcd to a> the A\•B.\ procc,. nleamrct , the. c .capc lIeC Ift mm AC, il B U Iý :JJ :
ISI H with modes Io.:ued o ,at 'ýU b gt'r Ifluia I o! 1 2. "Tb Nt.ti (thc r "odull mi(! an 'pt1 d
describing this histo,! ram Ihij. recently been developed)sd I s a Jun U,1 MON Iih It1(

sequence (thc ABA ,B prt ccs) leads to ', ,i.ogra i ,A ith [k, aks locatcd at ! / nl h'r ,lm'

This is (tic secquce,:c corin onl of- J,-'cd In Cxpncrml1entL.> (and the one that 'AC Ccnttt -
through the remainder of this ti. ssion). it points to the existence ol a "roet mee*hare >wN
between every pair of spikes. ,he reset events arc idcnrtiied with the repollafiat•ion, o( the icurim
membrane that occur be,\ccn successive upstrokes of the action pOFtennal and arc niot dire1,i',
observable in neuropoysiological experiments. In figure 6 we show an expenmental ISill
obtained from the single auditory nerve fiber of a cat. This data should be' compared ,kLti the'
ABAB ISIH-4 .,')own in Iiigure 7. The sequence in this figure is obtained via analog simulation ou
(91) with the potential function U given h% (16) as well as the "standard quarjti

I - (this potential is also bistable. The sequence of peaks in the ISM!t implies

form of phase-locking of the neuron dynamics to the stimulus. Starting from its quiescent state.
the neuron tries to tire at the first maximum of the stimulus cycle. If it fails to do so, it will fire at
the next maximum of the stimulus (i.e. after a complete stimulus cycle) and so on, with a firing
event corresponding to a switch between the two states of the potential (10). This "statistical skip-
ping" leads to the sequence of peaks in the ISIH. Decreasing the noise strength (keeping all the
other parameters fixed) leads to more peaks in the histogram since skipping becomes more likely
Conversely, increasing the noise tends to concentrate the probability into the first few peaks. For
vanishingly small stimulus amplitude, the peaks merge into a Gamma distribution characterizing
the ISIH for the spontaneous case [Longtin et. al. 19921; such a distribution has also been
observed experimentally.

6% Fig 8. ISIHs computed via numerical
t..l A simulation of (9) with

25 ••,s ' • :•Q(,q ,o,)-(l.6056,0.304 rt10 ,0. 13-4

Sand uncertainty (see text) At =0
"(solid curve), 0.1 (dotted curve),

d: : 0.25 (data points). Note the
S.transition from peaks at nT72 to

E.:."' ° peaks at nT for increasing At.

o0 0

eý 20. Ge. s0 80 200

Time (ms)

Our model is seen to reproduce all substantive features of the experimental data: in addition
to the characteristic T-dependent locations of the successive peaks, the modal decay rates (except
for the first few peaks) are exponential. Analog simulations show [Longtin, Bulsara and Mo0,
1991; Longtin et. al. 1992] that, on a semi-logarithmic scale, the decay constan is proponional
to the modulation amplitude 8 for fixed noise intensity a, with a qualitatively similar relation
ship obtained between the decay rate and the noise strength for constant 8. This is not too surprj,,,
ing since the noise and signal are on equal footing in (9). We may then speculate that, over a cer
tain (as yet not fully defined) range of parameters, the noise and signal play intcrchangeable rmie,'-
in determining the shape of the ISIH. Their roles are not completelN reciprocal. hnwcxcý. ir._
the peak-widths in the ISIt! are dependent on a,. Increasing the stimulus amplitude lead- tot!,"
increase in the heights of the lower lying peaks. This is consistent with experimcntal ohsera',,i:



Comuparison to lntegtrate-Fire Models
A stochlast ic. model, simfl a r in spin( t o thc decricnmui, inw,;e~rane -tnrc na dci

Keener',. I loppensteadi anid Rinzel 1SI. and refere~nce thereinl was on ipnallvde1 k1
-ýiei n and Mandeibrot I90-114 to try to e xplau iit thcxpenrnieiitahl\ observed IS toIc ~rsoJI-
spontaneous liring eve~n t~s a,, pointed out above, thi, distribt-iion l'unction iý s 1 ( aim mai n
tion A ssýnminL thc underIvineL d vnami es to be timc:-Stanionarv. aI random ailk dsr ~
in1voked, based on the cornerstone requiremeint of' I stable distribution function for the probabi 1 t'
densit\ of first passage times corresponding to the dynamics. -fhe state variable u ,kit Iv~unled
to execute a biased random walk to an absorbinet threshiold at wh0ich poim, a tirine event was
de~si enaiud ito haive occurreCd anld the tmemrahne poten-rtial u.- was then inistant a~itousl ' reseto it>
sLarting value 1 the, roset mechanism beingL purel.% determinfistic. unlike our histable mo11del, InI
wkhich it is,. stochastic). The distance betwecen the oriin and tie threshold is the "harrier hec-lit
(analogous to the height ui,, of the potential harrir in our bistable model) in the Gerstein-
%landelbrot description, Further, it was assumed that the motion in phase space occurs under the
influence of a positive drift coefficient pi which was defined by Gerstein- Mandelbrot as the differ-
ence between the drift Velocities corresponding to excitatory and inhibitory synaptic inputs (it is
neurophysi olo g icailly reasonable to assume these velocities to be different), Then, assuming the
presence of somc (as yet unquantified) random background noise which is taken to be Gaussian
delta-correlated with zero mean and variance (T, one may write down the Langevin equation for
this process:

u 1pF (t), (8

to which corresponds the Fokker Planck equation

at u, e3U 1

for the probability density function P (u1 t)l. This equation can be readily solved subject to the
appropriate boundary conditions and the probability density function of first passage times writ-
ten down in the form [Gerstein and Mandelbrot 19641,

z (Z -4t),
g (1)~ t expý - 2&~(20)

The density function g (i) reproduces many of the properties of experimentally observed ISIHs for
the spontaneous firing case. The mean first passage time to the absorbing t~hreshold is calcuiated
as the first moment of gQt), and its reciprocal yields an average firing rate. Variations of this
model incorporating moving boundaries (which mimic refractoriness and are therefore closer to
neurophysiological reality) as well as a drift term that is linear in the dependent variable ul (the
underlyiag dynamics is, in this case, representative of an Omstein-UhlenbecK process), have been
studied by Johanessma 119681 and. Clay and Goel [1973].

In order to make even better contact with experimental results, it is necessary to provide
reasonabix, good numerical values for the drift coefficient .t. the "barrier height" z and the back-
veround noise variance cr2 in the above model- A first attempt to do so (while simultaneously pro-
viding a test of the goodness of tit of the model to necurophysiological data) was carried out by
Berger ct al l 9)001, They earrned out an experiment aimed at recording the inter-spike-interval
distribution from extra-cellular recordings on the cat visual cortex. Having obtained the experi-
men1ial IS]IJls, they were able to compute the equivalent model quantities ji and z via the mean

4N standard deviation of the experimentally obtained ISIHs. assuming a fixed background noise
va;rianice r'-v While we do not give any further details of the experiment, it is noteworthy that,

c these- t consistent' values of ýi, and n- %kere substituted into the first passage time pro-
I!,% dens\it fUnICUtion an excellet1 fit Of the model 120 to the experimental ISills resulted In

-r? w'iOi uicton, BerLcTr and Pribram 19(.. #12 extnded their work to Inc orporate the
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thc lull' coupled N- bQd\ s• stem -ithin the cost raints, ol t01 thoC(r\ T:,,, Jpplo h,.<'lh

inmacroscopic potential turll'tIonl U J tiUned in (Ilt) 0 which uaraf•ltvc-,,•k hal , t il :

dvnanic systeni tor positivc o '-kliotut havrI: t[o constrain oursckc', tit a -mi•ul ,
matn x J. Our thcor\ is scnfi to a~rce \k•_ l with large numerical sim ulatlnlO 01 th-lk CouP!,,!,,
ehastic differefltial equations ( I , %ithtnH the hounLd iMposcd hb the COýtit, 42 "Old 1.,

The theory described hcre crablos us to descnbe a ntcwork of riorniimnar oe,,,A iaor, a k i'r -
nonhmniar coupling. Itow, ever, by'cause of the separation of tinic-scales. tire dendrl: bth 1,
tacitly assumed to be ver\ close to its steady state. This leads to the quasi-hncarration dppr':,,:
mations (9) and I I I and brings our description of the bath closer to owher quasi-linear dcdnmx
models (see e.g. Segev ct. al. 1989). In effect. we have assumed that the dendritic patchc- aro
only weakly bistable: they arc not "strong" threshold devices, These assumptions also bring ou-
approach closer to conventinal mean-field theories I see e.g. Amit 19S9 for an over'ie, Ii:T"
such theories, the current approach does not depend on a large number N of entities to improrv,,
its convergence although, as pointed out earlier, in the presence of additional elements in i i•v'•h
similar time constants, recourse to a more conventional mean-field approach may be unavoidahbc
Further, it is interesting to note that the notion of representing the dendritic bath as a tessclation
of elemental volumes each described by a quasilinear stochastic differential equation ior anl
activation function u, (i >l) is similar in spirit to existing compartmental models of dendritic trees
(see e.g. Segev et. al. 1989). Our results appear to be independent of the choice of the statistics of
the elements of J; repeating the calculations of this paper with the J, drawn from a uniform dis-
tribution yields qualitatively similar results although, as pointed out earlier, Gaussian statistics
may be more reasonable from a neurophysiological perspective. In this connection it is worth
pointing out that one expects typically small/sparse interactions (characterized by coefficients
J,, --+0 ij > 1) between dendritic volumes so that these coefficients may indeed be reasonably
characterized by a sharply peaked (about zero mean) Gaussian. The distribution of the
coefficients Jj, and JI, (these coefficients characterize the interaction between the soma and the
dendritic volumes) is broader. Good agreement between the probability density P(u I) for the
reduced system (9) and the exact system (1) is also obtained for somewhat larger q values and
noise strengths (within the bounds of the inequality f' 2)), although the agreement begins to break
down when the adiabatic condition on the frequency is violated. The magnitudes and signs of the
J, can be very important in determining the overall sign of the renormalized coefficient P in
(1 lb) and this, in turn, determines the modality of the potential (10). For a monostable potential
(13 < ox) the cell body is always quiescent and there are no cooperative effects. The bath coupling
can render a monostable potential (for the isolated cell body) bistable, under certain conditions,
thereby imparting a firing capability to the neuron; the opposite effect can also occur. This is evi-
dent from the definitions (I lb,c): changing the dendritic parameters changes tie barrier height
and the location of the elliptic points of the effective potential (10) that characterizes the soma
dynamics, while also renormalizing the modulation amplitude. These changes lead, in turn, to
changes in the SNR given by the expressions (16) and (17).

The approach to the processing of information in noisy nonlinear dynamical systems. based
on the probability density of residence times in one of the stable states of the potential offers an
alternative to the FFT, and has been applied [Longtin, Bulsara and Moss 1991, Longtin et al
19921 in the theoretical construction of inter-spike-interval histograms (ISIHs) that describe neu-
ronal spike trains in the central nervous system. This model exhibits remarkable agreement with
data obtained in two different experiments some 25 years apart [Rose et. al. 1967; Siegal 199)0l) a,
well as with the more recent data of Rhode 11991; unpublished]; figures 6 and 7 demonstrate this
agreement. The approach of Longtin et. al. has been contrasted with more conventional thcones
of ISIHs based on integrate-and-fire (IF) models in which the activation performs a random w•alk
to an absorbing barrier and is then reset to its initial value. In the absence of an absolute retrac-
tory period, the two approaches may, in tact, converge with the mean tiring rate (computed a- 1thC

rcprocal of the mean first passage time) in the IF model corresponding, roughl\, to tuh ,,a,
duration of a full-cycle switching event in the bistable diffusion model of Longim ct. al he
approach of Longtin et al . however, seems to offer the most elegant trvatment of the ISIFI. cer
t irl% it permits onc to match the model with experimental data (far more cloh,c\ 0h,vl
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